The constants in (1) and (2) are tabulated in two ways: to 16 D and also in octal floating point to 16 significant octal places. Also given are auxiliary tables pertaining to the errors in (1) and (2). The tables comprise 133 pages.

To the reviewer's knowledge, this is the first place in which formulas (2) have been studied. They are proposed for the following reason: Suppose one has approximated an integral using (1) for a fixed N. Then by computing $N+1$ additional values of the integrand one obtains a formula (2) of degree $3 N+1$ (or $3 N+2$) which serves as a check on (1). If one were to use an $(N+1)$-point formula (1) as a check, this would only be a formula of degree $2 N+1$.

The reviewer, however, is not convinced of the value of checking by this method. What is gained by checking a formula of degree $2 N-1$ by one of degree $3 N+1$ instead of by one of degree $2 n+1$?

The introduction to the tables reproduces at least one error of the original Russian and has several added typographical errors. The displayed equations in the text and the tables are reproduced photographically from the original. The price seems about twice what would be necessary in a book of this nature.
A. H. Stroud

Computation Center
University of Kansas
Lawrence, Kansas

31 [M, X].-Floyd E. Nixon, Handbook of Laplace Transformation: Fundamentals, Applications, Tables, and Examples, Second Edition, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1965, xii +260 pp., 24 cm . Price $\$ 7.50$.

This handbook is intended as a guide for those already familiar with the subject or as a text, albeit a short one, for the uninitiated. On both counts, it leaves much to be desired, and there are already available many references which are better by far. In the applications, knowledge of methods for finding the roots of polynomials are essential. This subject is taken up in Chapter 2. For the solution of equations or order higher than four, the author's only suggestion is an iterative method due to S . Lin. The discussion is woefully inadequate, as there is no discussion of convergence. In fact, the procedure does not always converge; and if it converges, the convergence is usually linear. The Newton-Raphson, Bairstow and other useful processes are ignored.

In general, the material is directed to the solution of ordinary differential equations with constant coefficients, with applications mostly to mechanical and electromechanical systems. For readers of this journal, the only useful feature of the book is a table of Laplace transform pairs [$F(s)$ is the Laplace transform of $f(t)$], where $F(s)=p(s) / q(s), p(s)$ is at most a cubic in s, and $q(s)$ is most often a quartic in s, though there are some cases where $q(s)$ is a quintic or a sextic. The table comprises about 75 pages. In each case, $q(s)$ is represented in factored form as a product of linear and/or quadratic factors. A certain coding is used to facilitate location of $f(t)$ corresponding to a given $F(s)$.
Y. L. L.

